Computational Assay of H7N9 Influenza Neuraminidase Reveals R292K Mutation Reduces Drug Binding Affinity
نویسندگان
چکیده
The emergence of a novel H7N9 avian influenza that infects humans is a serious cause for concern. Of the genome sequences of H7N9 neuraminidase available, one contains a substitution of arginine to lysine at position 292, suggesting a potential for reduced drug binding efficacy. We have performed molecular dynamics simulations of oseltamivir, zanamivir and peramivir bound to H7N9, H7N9-R292K, and a structurally related H11N9 neuraminidase. They show that H7N9 neuraminidase is structurally homologous to H11N9, binding the drugs in identical modes. The simulations reveal that the R292K mutation disrupts drug binding in H7N9 in a comparable manner to that observed experimentally for H11N9-R292K. Absolute binding free energy calculations with the WaterSwap method confirm a reduction in binding affinity. This indicates that the efficacy of antiviral drugs against H7N9-R292K will be reduced. Simulations can assist in predicting disruption of binding caused by mutations in neuraminidase, thereby providing a computational 'assay.'
منابع مشابه
R292K Substitution and Drug Susceptibility of Influenza A(H7N9) Viruses
Neuraminidase inhibitors are the only licensed antiviral medications available to treat avian influenza A(H7N9) virus infections in humans. According to a neuraminidase inhibition assay, an R292K substitution reduced antiviral efficacy of inhibitors, especially oseltamivir, and decreased viral fitness in cell culture. Monitoring emergence of R292K-carrying viruses using a pH-modified neuraminid...
متن کاملInfluenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility
Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensit...
متن کاملThe R292K mutation that confers resistance to neuraminidase inhibitors leads to competitive fitness loss of A/Shanghai/1/2013 (H7N9) influenza virus in ferrets.
BACKGROUND Neuraminidase (NA) inhibitors are the only licensed therapeutic option for human zoonotic H7N9 infections. An NA-R292K mutation that confers broad-spectrum resistance to NA inhibitors has been documented in H7N9 patients after treatment. METHODS We evaluated the transmission potential of a human influenza A H7N9 isolate with a NA-R292K mutation in the ferret model followed by genot...
متن کاملEmergence of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a natural IFN-α for infection control and treatment.
The novel avian H7N9 influenza virus has caused more than 130 human infections with 43 deaths (as of September, 2013) in China. Because of the lack of existing immunity against H7 subtype influenza viruses in the human population and the absence of a licensed commercial vaccine, antiviral drugs are critical tools for the treatment of infection with this novel H7N9. Both M2-ion channel blockers ...
متن کاملBiological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017
With no or low virulence in poultry, avian influenza A(H7N9) virus has caused severe infections in humans. In the current fifth epidemic wave, a highly pathogenic avian influenza (HPAI) H7N9 virus emerged. The insertion of four amino acids (KRTA) at the haemagglutinin (HA) cleavage site enabled trypsin-independent infectivity of this virus. Although maintaining dual receptor-binding preference,...
متن کامل